
Intelligent Scissoring for Interactive Segmentation of 3D Meshes

William Kiefer1

Princeton University

Figure 1: Example session in which a user segmented a model with intelligent scissoring. Strokes are shown in transparent black. Different colored surfaces
indicate separate parts computed by the intelligent scissoring algorithm. Note how the cuts between parts are smooth and well-placed, even though the user
drew wide, inaccurate strokes. This sequence took under a minute with the system presented in this paper and the viewpoint never changed. The image on the
far right shows the cuts as seen from on the backside of the mesh.

Abstract

Many algorithms and tools exist for the segmentation of 3D meshes.
However, they are labor intensive and lack the simplicity of2D im-
age segmentation systems, limiting them to a small set of expert
users. This paper introduces a new segmentation tool which aims
for accurate and �exible interactive mesh segmentation, yet main-
tains an easy-to-use interface suitable for novices and experienced
users alike. Extending the stroke based interface of 2D intelligent
scissoring, 3D intelligent scissoring tackles the dif�culties that arise
from three dimensionality while at the same time gives the user
more freedom than in previous systems. Intelligent scissoring ob-
tains desirable segmentations easily and interactively, and presents
many possibilities for future work within the �eld.

Keywords: Segmentation, Interactive modeling tools

1 Introduction

The decomposition of an object into a set of meaningful partsis an
important operation in many areas of computer graphics. In two di-
mensions, a variety of easy-to-use tools already exist for feature ex-
traction and image segmentation. However, expanding thesetools
to three dimensional meshes introduces numerous new problems.
Current research has developed a number of new tools for thistask,
yet because they can be labor intensive and dif�cult to use, their
use is limited to a small set of experienced users. Thus, there is
a demand in 3D interactive modeling for an easy-to-use tool that
combines the simplicity of two dimensional image segmentation
with the accuracy of many current three dimensional segmentation
tools.

This paper introduces just such an intuitive and �exible tool for
the interactive segmentation of 3D meshes. The user paints some

1Senior thesis, April 30th 2004.Advised byThomas Funkhouser.

number of strokes on the mesh surface to signify seams of desired
segmentation. The system then �nds the optimal closed contour
through the user's strokes, and segments the mesh accordingly. This
intelligent scissors system is a true extension to previouswork on
two dimensional image intelligent scissoring; the underlying algo-
rithm is enhanced to adapt to the problems of three dimensional-
ity and the simple stroke based interface is modi�ed to allowfor
greater user �exibility. These two extensions, an optimization algo-
rithm that allows for iterated re�nement and a �exible interface for
interactive segmentation, are the main contributions of this work.

Motivation for this work comes from the aforementioned gap
within the current selection of interactive segmentation tools. Av-
erage users do not have user-friendly tools to create meshesof their
own design. Additionally, the effort involved to use these tools in-
creases as mesh resolution increases. As three dimensionalmodels
becomes more widespread for the everyday computer user, it is im-
portant to research and develop new easy-to-use tools that work for
both the professional and the novice.

The following sections address the major issues in the develop-
ment, use, and testing of 3D intelligent scissors. Section 2explores
current research and systems that relate to intelligent scissoring.
Section 3 provides a broad overview of the system, while sections 4
through 6 examine the algorithms and implementation of intelligent
scissors. Section 7 provides results from the system and section 8
concludes.

2 Related Work

Intelligent scissoring of 3D meshes builds off the researchand work
of numerous other systems. The following section describeswhat
work has been done with relation to intelligent scissoring and how
intelligent scissoring expands the existing �eld of interactive mod-
eling.

2D Intelligent Scissoring: There has been extensive study in the

N
aï

ve
 a

lg
or

ith
m

In
te

lli
ge

nt
 S

ci
ss

or
s

(a) User stroke (b) Front view (c) Top view

Figure 2: A screen-space “lasso” (top row) produces an unexpected seg-
mentation when the camera view is not perfectly aligned withthe desired
cut. In contrast, our intelligent scissors (bottom row) �nds the optimal cut
through the stroke, which may or may not be orthogonal to the view direc-
tion.

�eld of 2D feature extraction. Systems like [Mortensen and Barrett
1995] have been incorporated into almost every commercial graph-
ics editor today. Adobe Photoshop ([Incorporated 2004]) has both a
“magnetic lasso” and an “extract” option to aid users in segmenting
features within the image. Essentially, our system aims to trans-
fer these intuitive and effective tools into the 3D modelingworld.
However, there are two main dif�culties that arise during this pro-
gression into three dimensionality. First, there are no occlusions
in 2D images. The entire image can always be seen from a single
viewpoint. Thus, it is simple for a user to trace the contour of the
feature they would like to extract. In three dimensions, theentire
mesh cannot usually be seen from a single viewpoint, making it
dif�cult and, for the most part, impossible to draw a complete con-
tour in a single stroke from a single viewpoint. Second, the main
assumption for 2D intelligent scissors, stemming from the lack of
occlusions, is that the user will draw a fully closed contour. Both
the “magnetic lasso” and “extract” option in Adobe Photoshop re-
quire such a contour. Because one of the goals for 3D intelligent
scissors is simplicity, and since drawing a closed contour on a mesh
in a single stroke is usually impossible, this assumption will not be
made. In the end, our system will have to connect the various user
strokes into a single closed contour as well as determine thebest
cut within the speci�ed strokes.

Screen Space Algorithms:Almost every existing modeling sys-
tem today (e.g. [Foundation 2004], [Wavefront 2004]) contains
some variation on a simple screen space algorithm for segmenting
parts of a mesh. The most common tool is a “select box,” analogous
to 2D image select boxes, where the user clicks and drags a point on
the screen to de�ne a rectangular region on the screen. All vertices
and faces that project onto the screen within this region arethen se-
lected and segmented. This type of algorithm constrains thedesired
cut contour to align exactly with the view direction. As seenin Fig-
ure 2, poor results are obtained when this constraint is not met. In
fact, it is often impossible to align the the best cut for a given mesh
feature with the viewpoint direction. Also, surfaces in themesh
are cut even if they are not visible, so other parts of the model that
are occluded by the selected region will also be segmented. In all
instances, signi�cant clean up by the user is required to create the
desired segmentation. The time spent cleaning up (i.e. selecting
individual faces for addition or removal from the segmentedpart) is
proportional to the number of faces in the mesh, thus making �nely
sampled meshes labor intensive. Many modeling systems haveex-
tended the select box to a screen space “lasso.” However, this lasso
suffers from the same problems as mentioned above and addition-
ally requires the user to draw a very precise contour on the screen.

Geometric Snakes: Geometric Snakes, introduced by [Lee and
Lee 2002], is an energy minimization method for feature extraction

on meshes. This method is effective in �nding both protrusions and
depressions in a mesh, and avoids the dif�cult clean up problems
of screen space algorithms. However, in order to specify theregion
of the desired segmentation, individual vertices must be selected by
the user. This forces the user, after specifying some vertices on one
side of the mesh, to rotate the mesh and specify at least one vertex
on the other side if a full encircling contour is desired. On large
�nely sampled meshes, it can be tedious to specify speci�c vertices
and dif�cult to determine the optimal vertices to choose. Intelligent
scissors aims to give the task of picking vertices to the system and
allow the user to simply specify general areas of desired segmenta-
tion without necessarily changing the view direction.

Shortest Path Algorithms: In addition to geometric snakes, there
are systems that �nd the shortest path between user speci�edver-
tices ([Gregory et al. 1999; Wong et al. 1998; Zöckler et al. 2000]).
These systems fall subject to the same dif�culties mentioned above
and require the user to specify the vertices in consecutive order. In-
telligent scissors builds off of this approach yet alleviates the user
from the responsibility of specifying vertices and allows for the
painting of strokes in arbitrary order and direction.

Min Cut Algorithms: As an extension to shortest path algorithms,
a prototype intelligent scissoring system found the local graph
around the shortest path using a breadth �rst search. Faces along
the opposite edges of the connected graph were marked as sources
and sinks, and a minimum cut algorithm was applied to �nd the
optimal cut contour along the initial shortest path stroke contour.
This method worked well for low resolution meshes. Yet sincethe
running time to �nd a minimum cut isO(n2) wheren is the num-
ber of vertices, this method was too slow to be interactive for large
meshes. Additionally, it is dif�cult to form a minimum cut graph for
an arbitrary number of user strokes in arbitrary locations,so more
restrictions have to be placed upon the user. Local optimizations
are also dif�cult since every re�ning stroke requires global mini-
mum cut computation. This can cause the cut contour to change
upon re�nement in areas that were not local to the re�ning stroke.

Automatic Segmentation: Automatic segmentation methods
([Katz and Tal 2003]) produce desirable results for many meshes.
There are obvious advantages to these automatic methods, yet of-
tentimes a user can immediately visualize a desired segmentation
that could be dif�cult for automatic methods to determine. Also, in
the context of an interactive modeling tool, the user would want to
specify exactly which part should be segmented rather than auto-
matically segment the mesh into many parts.

CAD Systems: CAD systems ([PTC 2004]) are not much differ-
ent than the other commercial modeling systems mentioned above.
The main difference lies in the type of meshes created, rather than
in the system's tools. The meshes created in CAD systems tend
to have strongly de�ned features with many sharp angles and �at
planes. These situations are ideal for intelligent scissors because
almost any sharp feature could be segmented by a single stroke.
Thus, intelligent scissors could become an important tool in these
systems.

Cut and Paste Methods:Cut and paste based modeling systems
like [Biermann et al. 2002] allow for feature extraction from a
source mesh before transferring that feature to some destination
mesh. These systems focus mostly on the warping of the given
feature to the destination mesh rather than the feature extraction it-
self. Typically, a general region around the desired feature must be
speci�ed by the user via a spline or set of faces. Yet this region need
not be exact because the system will eventually blend the mesh fea-
ture with the destination mesh. Thus, the feature extraction tools
of these systems are not exact enough for pure mesh segmentation
and require the user to specify a full contour. Their user speci�ed
contour is generally not optimized by the system given that their

2

� � � � � � � � � � 	

 	 � �
 	 � � � � � � � �

� � � � � � � � � � � �
 	 � �

� � � � � � � � � � � � � �

� � 	 � � 	 � 	 � � � � � �

� 	 � � 	 � �

� � � � � � � � ! "

� � $ % & � % � � & �

� " ' (" � �

Figure 3: Left: The basic �ow of a user session.Right: An expanded
view of a user session. Blue rectangles represent user controlled actions
while green rectangles represent automated work on the partof the system
(Creating new swaths can be done automatically by the systemor by the
user).

algorithm blends the feature in the end.

This paper is an expansion of the intelligent scissoring described
in [Funkhouser et al. 2004]. Certain �gures and portions of text
from this earlier work have been incorporated into this paper.

3 Overview

As seen in related work, current methods for interactive segmenta-
tion can be labor intensive and tedious. Many of the methods be-
come more dif�cult as the resolution of the mesh increases. Thus,
intelligent scissors aims to �ll a current gap in interactive model-
ing tools and presents a simple and intuitive method to segment
meshes into parts, regardless of the resolution of the initial mesh.
Speci�cally, intelligent scissors frees the user from specifying spe-
ci�c vertices, allows the user to produce cuts that encirclethe mesh
from a single viewpoint, and gives the user the freedom to specify
portions of the cut contour in any arbitrary order while the system
gives progressive feedback.

The left image in Figure 3 shows the most basic �ow of the in-
telligent scissors system. The user simply paints a stroke on the
surface of the mesh indicating the desired area of segmentation.
The system then �nds the optimal closed cut contour de�ned by
that region. Finally, the mesh is segmented along the cut contour.
To allow for greater �exibility, the system can show the proposed
cut contour to the user before segmentation and the user can paint
more strokes to achieve further re�nement.

The right image in Figure 3 shows a more detailed view of
what actually happens in the intelligent scissors system. There
are three main extensions to the basic system that the user may
or may not use. (1) When the user �nishes a stroke, the painted
region of the mesh can optionally be resampled according to ade-
sired edge length (section 6). This allows for better cut contours
in coarse regions of the mesh where there are few initial edges and
large triangles. (2) The system can optionally build a partial mesh,
explained in section 5, which ensures optimization along the full
length of self-intersecting user strokes. (3) In order to cut meshes
with a genus other than zero, multiple cut contours may be needed.
Swaths, explained in detail in section 4.4, are collectionsof user
strokes that maintain separate cut contours. The system allows for
creation of multiple swaths to handle high genus meshes.

These extensions do not complicate the basic �ow of the intel-
ligent scissors system. Instead, they extend the �exibility of the
system as a whole while maintaining a basic interface. Mesh re-
sampling and partial mesh creation are both handled automatically
by the system. The creation of new swaths can also be handled au-
tomatically by the system, but may also be controlled by the user. In

the common segmentation case, the user will simply draw a stroke
and the mesh will be segmented immediately. Further re�nement
can be achieved through additional paint strokes on any of the ex-
isting swaths.

4 Intelligent Scissoring

Intelligent scissoring expands upon previous methods in four im-
portant ways. These are described in detail in the followingfour
subsections.

4.1 Stroke Speci�cation

Using a brush metaphor, the user paints “strokes" on the meshsur-
face to specify where cuts should be made (Figure 4a). Each stroke
has a user-speci�ed width,r, representing a region of uncertainty
within which the computer should construct the cut to followthe
natural seams of the mesh. From the user's perspective, the mean-
ing of each paint stroke is “I want to cut the surface along thebest
seam within here.” From the system's perspective, it speci�es a
constraint that the cut contourmustpass withinr pixels of every
point on the stroke, and it provides parameters for computing the
cost of cutting along every edge,e, in the mesh:

cost(e) =

clen(e)a � cang(e)b � cdist(e)d � cvis(e)g � cdot(e) l � ccurv(e)h

Edge costs are used to determine the optimal path along the mesh.
Each edge cost parameter is described in depth below. The default
values for the parameter weighting terms,a , b , d, g, l andh are
all one, but may be tweaked by the user for various cut behaviors.

Edge Length: clen(e) is simply the length ofe, and ensures that
short cut contours have low cost.

Dihedral Angle: cang(e) = qe=2p whereqe is the angle between
the two adjacent faces ofe, giving cuts along concave edges less
cost. This parameter dominates cut contour decisions on coarse
meshes where single edges typically de�ne important topologi-
cal features such as creases. However, in �nely sampled meshes,
ccurv(e) provides better optimization in troughs and valleys where
the dihedral angle does not provide enough local information.

Visibility: cvis(e) gives less cost to edges that are not visible. This
parameter is motivated by the observation that the user would have
painted on a visible edge if a cut were desired there. In otherwords,
not painting visible edges signi�es that the user does not desire a cut
in that region. Combined withcdot(e), cvis(e) encourages the least
cost cut contour to traverse the “back-side” of the mesh. Without
these terms, the least cost path would most likely traverse through
the user stroke and then back upon itself. In general, when the user
stroke is more than half of the width of the object being cut, the
least cost path will traverse the “back-side” of the mesh

Normal Orientation: cdot(e) as mentioned above encourages the
least cost cut contour to traverse the back side of the mesh. Whereas
cvis(e) gives all non-visible edges less cost,cdot(e) gives edges
whose adjacent face normals are aligned with the viewing direction
less cost. Without this parameter, the least cost cut contour would
have the tendency to follow the non-visible edges along the silhou-
ette boundary back to the beginning of the stroke. Thus,cdot(e)
allows the least cost contour to traverse the actual “back-side” of
the mesh, rather than traverse the edges just beyond the silhouette
boundary.

Stroke Distance:cdist(e) = r� d
r whered is the maximum distance

from the centerline of the stroke to the screen space projection of

3

the edge. This parameter re�ects the desire of the user to cutedges
that lie close to the center of the stroke.

Curvature: Considering curvature when calculating the edge cost
allows for better cut decisions in �nely sampled troughs andcreases
of a mesh where the dihedral angle does not provide enough infor-
mation about local topology.ccurv(e) represents the curvature of the
mesh perpendicular to the edge direction. When a mesh is loaded,
curvatures and principal direction vectors are computed for every
vertex according to [Rusinkiewicz 2004]. These values are inter-
polated to compute curvatures for every edge. Depending on the
mesh topology, these edge curvatures can vary greatly over awide
range of real numbers. In order to map this variance to a meaningful
range of [0, 1], statistical techniques are applied. Speci�cally, af-
ter the initial mean and standard deviation are calculated,curvature
values that lie more than three standard deviations above orbelow
the mean are temporarily ignored while a second mean and standard
deviation are calculated. This second mean and the standarddevi-
ation de�ne the �oor and ceiling that map curvature values tothe
range [0, 1]. The default range, which can be adjusted by the user,
clamps curvature values to within three standard deviations above
and below the second calculated mean.

Thecang(e) andccurv(e) parameters are by default set up to en-
courage cuts along edges with negative perpendicular curvatures
(protrusions and creases in the mesh). However, by inverting these
terms it is possible to segment along very convex portions ofthe
mesh (depressions and rounded corners).

4.2 Finding the Cut Contour

Figure 4: Cutting the bunny with intelligent scissoring: (a) the userdraws
a wide paint stroke; (b) the system identi�es all vertices inthe capsof the
stroke, C1 and C2; (c) it then �nds the least cost paths from every vertex
in C1 to every vertex in C2 twice, once constrained to lie within the stroke
(yellow dotted lines) and once without any constraints (reddotted lines),
and forms the proposed cut out of the the pair of paths with theleast total
cost. (d-f) Since the edges traversed by the algorithm (wireframe gray) have
less cost (lighter gray values) in concave seams and on the back-side of the
mesh, (g-f) the least cost cut partitions the mesh along a natural seam of the
mesh.

Figure 5: Cutting the face of Athena with intelligent scissoring: (a)the user
draws an imprecise �rst stroke (gray); (b) the system proposes a cut (yellow
curve); (c) an overdraw stroke (gray) is drawn to re�ne the cut; (d) the
system splices in the least cost path traveling from V1 �rst to C1 (red), then
to C2 within the stroke (blue), and �nally to V2 (green); (e) the proposed cut
contour is updated; (f) the �nal result is a segmentation of the mesh into two
parts (green and red) separated by natural seams of the mesh.

As mentioned in the previous section, the challenge is to �ndthe
least cost closed sequence of edges that passes withinr pixels of
every point on the user's stroke in sequence. Because the user can
draw an open contour, two distinct least cost sub-problems must be
solved: the optimal path within the stroke and the optimal path con-
necting the end points of the stroke back together. These twopaths
together create a closed cut contour. The key to solving these two
sub-problems ef�ciently is observing that the cut must passthrough
at least one vertex in the “cap” at each end of the stroke. The caps
of the stroke,C1 andC2 (Figure 4b), are de�ned as the sets of ver-
tices within screen space radiusr of the �rst and last points on the
stroke drawn over the model itself. Using Dijkstra's shortest path
algorithm ([Dijkstra 1959]), modi�ed with our edge cost function
described above, the system solves the two sub-problems: (1) �nd
the least cost path constrained within the boundaries of theuser's
stroke between all vertices in C1 and all vertices in C2, and (2) �nd
the least cost path, unconstrained by the stroke boundaries, between
all vertices in C1 and all vertices in C2 (Figure 4c). The optimal cut
contour is the pair of paths, one from each sub-problem, thatforms
a closed contour with least total cost.

The computational complexity of the intelligent scissoring algo-
rithm for a single stroke isO(k nlogn), wheren is the number of
edges in the mesh, andk is the number of vertices inminf C1;C2g.
k is typically small and the constrained least cost path problem only
considers a small subset of the mesh. Therefore, the upper bound
on computation time is determined by the unconstrained least cost
path search. In general, these least cost path searches onlycover
some subset of the mesh, allowing running times to be interactive
in practice.

4.3 Re�ning the Cut Contour

By default, the system will partition the mesh immediately after
the �rst stroke, according to the computed optimal cut. However,
the user is provided the option of re�ning the cut interactively with
“over-draw” strokes. In this case, the system displays a “proposed
cut” for user veri�cation. If unsatis�ed, the user can draw new
strokes that re�ne the cut incrementally. This feature encourages
the user to draw broad strokes quickly, in any order, and thenitera-
tively re�ne the details only where necessary.

4

For each over-draw stroke,S, the system automatically deter-
mines the portion of the proposed cut that should be replacedby the
over-draw stroke and splices in a new, locally optimal path through
the new stroke. The system starts by �nding the points,V1 and
V2, on the proposed contour closest to the stroke's endpoints on the
mesh (Figure 5c). If they lie within a previously painted region,
the system simply removes the shorter of the two cut contoursbe-
tween them. Otherwise,V1 andV2 are moved away from each other
along the proposed cut until they both reside in previously painted
regions.

To compute the new path fromV1 to V2, a divide and conquer
approach is used again. We �rst compute the least cost paths from
V1 andV2 to all vertices in their corresponding stroke caps,C1 and
C2. Then, we compute the least cost paths within the stroke from
all vertices inC1 to all verticesC2 as before (Figure 5d). Finally,
we �nd the triplet with least total cost forming a connectingpath
fromV1 toV2 throughC1 andC2 and splice it into the proposed cut.
This algorithm also runs inO(k nlogn).

This incremental re�nement approach has several desirable
properties. First, it provides local control, guaranteeing that pre-
viously drawn strokes will not be overridden by new strokes unless
they are in close proximity. Second, it is fast to compute, since all
but two of the least cost path searches are constrained to liewithin
the stroke. Finally, this method allows the user to specify precisely
where the splice should be made by simply starting and stopping
the over-draw stroke with the cursor near the proposed contour.

4.4 Handling High Genus

Meshes with a genus above zero cannot necessarily be segmented
into parts using a single closed cut contour. To handle thesecases,
we de�ne a new term, aswath, to refer to a collection of one or more
user strokes that together create a single closed cut contour. Each
swath on the mesh can be re�ned independently of the others. The
mesh always has one active swath, which is the target of any new
user re�nement, and zero or more inactive swaths. At any point,
the user can create a new swath or switch which swath is currently
active.

Figure 6: Left: A single user stroke that crosses two sections of the torus,
causing the system to automatically generate two separate swaths. Right:
Resulting segmentation.

Additionally, new swaths are automatically created when the
user stroke crosses multiple portions of the mesh on a singlestroke,
i.e. crosses a silhouette boundary onto the background and then
crosses a silhouette boundary back onto the mesh (Figure 6, left).
Without this feature, the user would be required to draw one stroke,
create a new swath, draw the second stroke and �nally segment.
Automatic swath generation allows the user to simplify thisproce-
dure into a single stroke.

5 Partial Mesh Creation

The following subsections provide the motivation, de�nition, and
implementation of the partial mesh extension to the intelligent scis-
soring system.

5.1 Motivation and De�nition

Given the algorithm described in section 4, the least cost cut contour
is still not guaranteed to satisfy the original problem description in
certain cases. Speci�cally, when the user stroke is self-intersecting,
the least cost cut contour will not necessarily pass withinr pixels of
every point on the user stroke. Because there are no negativeedge
weights, the least cost cut contour will always bypass any cycles
within the user stroke, thereby neglecting to pass withinr pixels of
all points on that cycle.

An initial solution might be to restrict users from drawing cycles
within their strokes. This might be feasible when dealing with ex-
traneous cycles that do not make intuitive sense when segmenting
meshes. However, one common case is for the user to slightly over-
lap the start and end of the stroke (Figure 7, left), in essence making
the whole stroke path a cycle. In these cases the system wouldpro-
pose the cut in the middle image of Figure 7, whereas the correct
least cost contour would look like the right image of Figure 7.

Figure 7: Left: The user stroke, black, shown around the eye of Athena.
Notice that the start and end of the stroke overlap each other. Center: The
proposed contour without the use of a partial mesh. The leastcost contour
between cap vertices is a single edge.Right: The proposed cut contour
using partial mesh construction. The least cost path satis�es the require-
ment that it passes within r pixels of every point on the original user stroke.
Proposed contours in this �gure are shown thicker for clarity.

In order to overcome this case of self-intersecting user strokes
we de�ne apartial mesh. A partial mesh is an exact copy of the
original mesh under the user stroke with the added property that
it does not self-intersect (Figure 8). The least cost paths between
cap vertices constrained within the stroke are then calculated on
the partial mesh, while the unconstrained least cost paths are still
computed on the original mesh. Optimizing the cut contour over the
partial mesh ensures that the least cost cut contour will traverse any
cycles within the user stroke, thus avoiding the situation in Figure 7,
middle.

The creation of partial meshes is presented as an option to the
user and may be turned off. Although the creation of partial meshes
does not add signi�cantly to the running time (it runs inO(m) where
m is the number of vertices within the stroke), turning it off saves
computation in cases where the user does not plan to draw self-
intersecting strokes.

) * + , + - . / 0 1 2 3

4
. * 5 + . / 0 1 2 3

Figure 8: Visualization of a partial mesh. Notice that the partial mesh is a
duplicate of the original mesh except that it does not intersect itself.

5

5.2 Implementation

The implementation of partial meshes is straightforward. After the
user stroke is drawn, a non-optimized open contour is found along
the center of the stroke. Every edge along this contour is created
within the initially empty partial mesh. Doing so “unfolds”the
stroke: intersecting edges along the stroke are no longer adjacent
on the partial mesh. New edges, faces, and vertices are addedvia a
breadth �rst search whose terminating case is a vertex that lies out-
side the stroke radiusr. Each edge, face, and vertex on the partial
mesh stores a reference to the original mesh, allowing easy transla-
tion back to the original mesh after the least cost path is found.

6 Mesh Resampling

The following subsections describe the motivation and implemen-
tation of mesh resampling with respect to intelligent scissors.

6.1 Motivation

Cut contours described in the previous sections were all limited to
preexisting vertices and edges. This limitation of cut contours, al-
though satisfactory in many cases, cannot handle many possible
segmentations. Planar regions of a coarsely or �nely sampled mesh
may only contain a small number of triangles whose edges allow
for few segmentation options. For example, if a user wished to cut
a tabletop comprised of two large triangles, the only possible cut
would be the single edge across the diagonal. With mesh resam-
pling, the tabletop could be cut into any arbitrary shape (Figure 10).

Segmenting through planar regions with low tessellation isone
practical motivation for mesh resampling within the intelligent scis-
soring system. However, many other scenarios can be ameliorated
with this extension: a user may have speci�c and �ne segmentation
requirements, the initial mesh could be poorly tessellated(i.e. many
long thin triangles), or the segmented region may need to be edited
after the segmentation in a way that requires additional samples.
Mainly, mesh resampling allows for more segmentation �exibility
regardless of the initial mesh.

6.2 Implementation

Mesh resampling is achieved through the iteration of three basic
edge operations as in [Hoppe et al. 1993]. These three edge oper-
ations collapse, split, or swap a single edge as seen in the diagram
in Figure 9. To determine which edges need to be collapsed, split,
and swapped, we use a method similar to that of [Markosian et al.
1999] and [Lawrence and Funkhouser 2003] where each edge keeps
track of its “desired length” as well as its actual length. After the
user paints a stroke, the “desired length” of every visible edge un-
derneath the stroke is updated to the length speci�ed by the user
before the stroke. The ratio of desired length to actual length for
each edge determines which operations, if any, are to be performed
for the edge.

edge collapse edge split edge swap

Figure 9: The three basic edge operations used during mesh resampling.

Figure 10: An overhead view of a table top that has been resampled incre-
mentally using the indicated values as desired edge lengths. The zoomed
image on the right shows a user stroke along with the proposedcut contour.
This arbitrary cut was impossible on the original tabletop,shown top left,
that only consisted of two triangles.

Speci�cally, three heaps maintain each of three values for every
edge: the minimum dot product of all angles on the adjacent faces
for edge swaps, the ratio of desired length to actual length for edge
splits, and the ratio of desired length to actual length for edge col-
lapses. Although both are sorted using the same value, the edge
collapse heap is distinct from the edge split heap because they are
sorted in opposite orders. The system iterates through eachheap
in order (split, swap, collapse), performing that heap's respective
edge operation on the minimum value edge until no more legal op-
erations can be performed in that heap. Legal edge operations are
de�ned as follows:

Edge Split: Edge splits are legal when the ratio of desired length to
current length falls below a given threshold. The default threshold
for the system is 0.5. Thus, when the desired length of an edge
is half the current length of the edge, that edge is split, andthe
two resulting edges will better approximate the desired length of
an edge. Because splitting an edge does not introduce any error
into the mesh topology, there are no additional restrictions on edge
splits.

Edge Swap: Edge swaps are legal if two conditions are met: (1)
the current minimum dot product of all the angles of the edge's ad-
jacent faces falls below a threshold and (2) if the swap will increase
the minimum dot product of all the angles of the resulting adjacent
faces. Condition one ensures that only adjacent triangles with one
large angle are considered, and condition two ensures that the swap
will be productive. Large angles are characteristic in longthin tri-
angles and thus, attempting swap edges in these situations promotes
the creation of roughly uniform equilateral triangles.

Edge Collapse:Edge collapses are legal when the ratio of desired
length to current length is larger than a given threshold. The default
for the system is 1.5. Using logic similar to that of legal edge splits,
edges are collapsed when the current length is less then halfof the
desired length. Collapsing these short edges aids in the removal
of skinny triangles. Edge collapses have the ability to introduce
resampling error because they can signi�cantly change local topol-
ogy. Currently, the system does not impose any additional restrains

6

on the legality of edge collapses because most of the edges that
fall above the threshold are small enough that the error produced
is not signi�cant. However, more sophisticated methods such as er-
ror quadrics ([Garland and Heckbert 1997]) or energy minimization
([Hoppe et al. 1993]) could be applied to diminish the introduction
of error.

One proposed method for mesh resampling involves creating
vertices along the center of the user stroke, and then triangulating
the surrounding area appropriately. However, this method suffers
from the major setback that it does not sample uniformly. Irregu-
larly shaped triangles, especially long thin ones, have thesevere dis-
advantage that any future segmentation in the area producesjagged,
irregular cuts. Additionally, within the context of interactive mod-
eling, uniform sampling improves results for many other mesh op-
erations ([Hoppe et al. 1993]). Therefore, the implementedmethod
of mesh resampling described above is used primarily because it
ensures that affected triangles are roughly equilateral and that ver-
tices are evenly sampled. A uniform resampling of the mesh allows
greater �exibility for future segmentation and other modeling op-
erations. Furthermore, laying down vertices along the userstroke
tends to lock the cut contour into the exact path of the user. Rather
than create a path of edges along the user stroke and adjust the
surrounding topology, intelligent scissors adopts the opposite view:
resample the local topology and then optimize under the stroke ac-
cordingly.

7 Results

The following subsections present results obtained from the intelli-
gent scissors system described above. All tests were performed on
a 2.8 GHz Pentium IV processor running Windows XP with 1 GB
of memory and a GeForce4 graphics card.

7.1 Scissoring

Figure 11 compares our intelligent scissoring results for acheetah
and a hand with results reported by [Katz and Tal 2003]. Whilethis
comparison is not altogether fair, since our algorithm is interactive
and theirs is automatic, it highlights the main disadvantage of auto-
matic approaches: they do not understand semantics. For instance,
the cheetah segmentation produced by [Katz and Tal 2003] includes
portions of the animal's back with the tail and neck and contains
an unnatural boundary between the right-hind leg and body (Fig-
ure 11, top left). As a result, the parts cannot be simply pasted into
another model without re-cutting them. Similarly, their hand seg-
mentation does not separate all the bones. Our segmentationof the
hand (Figure 11, bottom right) took 13 minutes (of user time), while
the automatic segmentation (Figure 11, bottom left) took 28min-
utes (of computer time) for the same model [Katz and Tal 2003].
Our segmentation of the cheetah took under thirty seconds.

Figure 1 and Figure 17 show two example user sessions where a
complicated model can be segmented into many parts from a single
viewpoint using single stokes. Both sessions took under a minute of
user time and highlight the simplicity of intelligent scissoring. Fig-
ure 16 shows an additional session more typical of a CAD system.
This series shows that on a mesh with sharp features, intelligent
scissoring can provide a quick accurate segmentation with asingle
stroke.

Figure 15, on the other hand, shows a more involved user session
on a mesh where the object being segmented could not be cut with
a single stroke. Instead, the user draws three separate strokes (Fig-
ure 15b, d, f) to achieve the desired segmentation of the dragon limb
(Figure 15h), using the proposed cut contours (Figure 15c, e, g) as
iterative feedback. This series, completed in under three minutes,
demonstrates the advantage of re�nement strokes on a complicated
mesh.

[Katz and Tal 2003] Intelligent scissors

Figure 11: Comparison of segmentations produced by the automatic al-
gorithm of [Katz et al, 2003] (left) and the interactive intelligent scissors
algorithm described in this paper (right) for a model of a cheetah and a
hand (654,666 polygons). Note that the cuts are better aligned with the
semantic seams of the object with intelligent scissors.

Figure 12: Left: The top image shows a user stroke over the bunny. The
portion of the mesh indicated is shown in detail below.Right: The proposed
cut contour after resampling. Again, the indicated region of the mesh is
shown in detail below. Notice the even resampling of the areaunder the
stroke.

Mesh resampling (Figure 12) successfully resamples the mesh
with even triangulation under the stroke. Although in this example
the resampling does not provide a path of less cost, it does allow
for more detailed editing of the segment. Because only areasunder
the stroke are reampled, there is a tendency for uneven triangulation
along the border of the resampled area and the rest of the original
mesh. Other limitations to mesh resampling are discussed inthe
section 7.2.

7.2 Limitations

The intelligent scissoring algorithm cannot perform all types of
splits (e.g. Figure 14). For instance, if a surface is occluded from
all viewpoints, the user cannot paint on it. Other user interface
metaphors, such as a “laser” mode in which all surfaces underthe
mouse get cut, would be better for such a situation (e.g., [Owada
et al. 2003]). Similarly, the painting interface metaphor can produce

7

unexpected results when the user paints over a silhouette boundary.
The problem is that the system makes sure to cut through everypart
of the user's stroke, which may connect points adjacent in screen
space but distant on the surface (Figure 13).

(a) User Stroke (b) Proposed Cut

Figure 13: The intelligent scissors algoritm ensures that the cut contour
(blue and yellow line on right) visits all regions painted bythe user (left),
which may be problematic when the stroke crosses an interiorsilhouette
boundary. Yellow portions of the cut are painted, and blue ones are not.

If the user brush width,r, is large enough, desired cuts across
thin parts of the mesh don't necessarily traverse the backside of the
mesh. Sincer is large, the least cost path will, in these situations, be
the folded contour between the two closest cap vertices within the
stroke. Take, for instance, the case wherer is greater than half of the
width of the object being segmented. TheC1 andC2 vertices will
overlap and the resulting contour will be a single vertex or single
edge. To combat this situation, a heuristic was used to limitthe
actual set of cap vertices within each cap to those whose projection
onto the estimated stroke vector fell below a certain threshold. This
heuristic effectively removed cap vertices that were located close to
the center of the stroke and close to the other end cap. While this
solved the problem and forced cuts with large caps to traverse the
backside of the mesh, it sometimes eliminated the vertex that would
have produced the least cost path. Further work could be doneto
investigate the minimum set of cap vertices to use that wouldstill
produce the optimal least cost cut contour and avoid the above large
r situation.

The mesh resampling algorithm presented in section 6 is a pro-
totype and is limited in two ways: (1) the algorithm does not at-
tempt to minimize error and (2) the algorithm only resamplesthe
mesh under the user stroke and not along the rest of the cut contour.
Fortunately, as mentioned previously, the �rst limitationis minimal
because the mesh resampling algorithm used does not producesig-
ni�cant error most of the time. Only occasionally does the local
topology change noticeably. Yet resampling itself was not the fo-
cus of this paper and other more sophisticated resampling methods
could easily substitute for the current method.

The second limitation, on the other hand, is somewhat signi�-
cant. While resampling under the user stroke is effective and pro-
duces the desired results (Figure 14c), the areas of the meshbe-
tween strokes are not resampled (Figure 14d). Thus, if the user at-
tempts to segment a fairly simple object that consists of a few large
triangles, new resampled edges are created along the user stroke on
the front side but edges on the backside of the mesh remain coarse.
Thus, the proposed cut contour will be desirable on the frontyet
jagged on the back side where the number of edges is low. Fig-
ure 14 demonstrates this situation. Further work must be done to
determine where else the mesh should be resampled after sucha
user stroke. A screen space solution to this question fails in many
of the same cases that a screen space segmentation algorithmfails
and resampling the entire mesh is unnecessary and computationally
expensive for most situations. Another possible solution would be
to �nd the initial jagged contour, resample around it, and then �nd

Figure 14: A user stroke with mesh resampling turned on. The initial mesh
(a) has no horizontal edges along the surface of the tube. Theuser stroke
(b) results in the creation of new edges in the desired area and what looks
like a desirable cut (c). However, the backside of the model has not been re-
sampled and the cut contour is forced to go along the bottom ofthe tube (d).
Resampling the entire mesh for this situation would be a probable solution,
yet would be inef�cient for many other situations. Interestingly, this mesh
also demonstrates a limiting case because the only possiblesegmentation
requires painting on the inside of the tube.

a new least cost cut contour. Nevertheless, the resampling of the
mesh brings to light this new limitation and spawns a new areaof
research.

8 Conclusions and Future Work

This paper proposes an intuitive and easy-to-use tool for interac-
tive segmentation of 3D meshes. This intelligent scissoring sys-
tem is accurate and maintains its simplicity despite the resolution
of the target mesh. Although this segmentation system can be
adopted into a variety of disciplines, it is aimed primarilyfor in-
corporation within interactive modeling tools. An earlierversion
of 3D intelligent scissors was implemented for Modeling by Exam-
ple ([Funkhouser et al. 2004]), a system designed to create models
from parts of existing models within a database.

In addition to the future work discussed in section 7.2, there are
various avenues of future research for intelligent scissors. Since in-
telligent scissors combines both a user interface and an algorithm
in a modular way, various other algorithms can be incorporated un-
derneath the interface. For instance, Geometric Snakes ([Lee and
Lee 2002]) could be applied to the proposed cut contour for further
re�nement. Work could also be conducted to develop variations to
the stroke based interface that would allow different stroke speci�-
cations for different situations.

Overall, this paper presents a new tool in an unexplored area
of interactive modeling, focusing on achieving the simplicity of
two dimensional image segmentation within the three dimensional
world. As a new tool in an array of existing modeling operations,
intelligent scissors will hopefully open the door to new easy-to-use
modeling tools that will help make 3D meshes as common and ac-
cessible as 2D clip art is today.

8

Figure 15: Example session in which the user segments the front right limb of a dragon mesh (a) consisting of 1,132,830 faces. This session demonstrates
intelligent scissors for a segmentation that requires morethan one stroke. The user draws an initial stroke (b) on the underside of the mesh. The system
proposes a cut (c), however the user rotates the model and sees that the rest of the contour is not desirable. (d). An additional stroke is drawn (d) and the
system re�nes the contour (e). The �gure is rotated again, and the user draws a third re�ning stroke (f). The proposed contour (g) is what the user wants, and
the mesh is segmented. The resulting segmentation is shown in green (h).

Figure 16: A user stroke and resulting segmentation of the fandisk model (12,946 faces). Segmentation is shown from various viewpoints.

Figure 17: A sequence of user strokes on the armadillo model (345,944 faces). From left to right, the user drawn series of approximate strokes with the
resulting segmentation.

9

References
BIERMANN , H., MARTIN , I., BERNARDINI, F., AND ZORIN, D. 2002.

Cut-and-paste editing of multiresolution surfaces. InProceedings of
the 29th annual conference on Computer graphics and interactive tech-
niques, ACM Press, ACM, 312–321.

DIJKSTRA, E. W. 1959. A note on two problems in connection with graphs.
Numerical Mathematics 1, 269–271.

FOUNDATION, B., 2004. Blender. http://www.blender3d.com.

FUNKHOUSER, T., KAZHDAN , M., SHILANE , P., MIN , P., KIEFER, W.,
TAL , A., RUSINKIEWICZ, S., AND DOBKIN , D. 2004. Modeling by
example.ACM Transactions on Graphics (SIGGRAPH 2004)(Aug.).

GARLAND , M., AND HECKBERT, P. S. 1997. Surface simpli�cation using
quadric error metrics. InProceedings of the 24th annual conference
on Computer graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., ACM, 209–216.

GREGORY, A., STATE, A., L IN , M., MANOCHA, D., AND L IVINGSTON,
M. 1999. Interactive surface decomposition for polyhedralmorphing.
Visual Comp 15, 453–470.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD , J., AND STUET-
ZLE, W. 1993. Mesh optimization. InProceedings of the 20th annual
conference on Computer graphics and interactive techniques, ACM, 19–
26.

IGARASHI, T., MATSUOKA, S.,AND TANAKA , H. 1999. Teddy: a sketch-
ing interface for 3D freeform design. InProceedings of the 26th an-
nual conference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., ACM, 409–416.

INCORPORATED, A. S., 2004. Adobe photoshop CS.
http://www.adobe.com.

KATZ , S., AND TAL , A. 2003. Hierarchical mesh decomposition using
fuzzy clustering and cuts.ACM Trans. Graph. 22, 3, 954–961.

LAWRENCE, J., AND FUNKHOUSER, T. 2003. A painting interface for
interactive surface deformations.Paci�c Graphics(Oct.).

LEE, Y., AND LEE, S. 2002. Geometric snakes for triangluar meshes.
Computer Graphics Forum (Eurographics 2002) 21, 3, 229–238.

MARKOSIAN, L., COHEN, J. M., CRULLI , T., AND HUGHES, J. 1999.
Skin: a constructive approach to modeling free-form shapes. In Pro-
ceedings of the 26th annual conference on Computer graphicsand inter-
active techniques, ACM Press/Addison-Wesley Publishing Co., ACM,
393–400.

MORTENSEN, E. N., AND BARRETT, W. A. 1995. Intelligent scissors
for image composition. InProceedings of the 22nd annual conference
on Computer graphics and interactive techniques, ACM Press, ACM,
191–198.

OWADA , S., NIELSEN, F., NAKAZAWA , K., AND IGARASHI, T. 2003.
A sketching interface for modeling the internal structuresof 3d shapes.
In 3rd International Symposium on Smart Graphics, Lecture Notes in
Computer Science, Springer, 49–57.

PTC, 2004. Pro engineer. http://www.ptc.com.
RUSINKIEWICZ, S. 2004. Estimating curvatures and their derivatives on

triangle meshes.

WAVEFRONT, A., 2004. Maya. http://www.aliaswavefront.com.
WONG, K. C.-H., SIU , Y.-H. S., HENG, P.-A., AND SUN, H. 1998.

Interactive volume cutting. InGraphics Interface.
ZELEZNIK , R. C., HERNDON, K. P., AND HUGHES, J. F. 1996. Sketch:

an interface for sketching 3D scenes. InProceedings of the 23rd an-
nual conference on Computer graphics and interactive techniques, ACM
Press, ACM, 163–170.

ZÖCKLER, M., STALLING , D., AND HEGE, H. 2000. Fast and intuitive
generation of geometric shape transitions.Visual Comp 16, 5, 241–253.

10

