Intelligent Scissoring for Interactive Segmentation of 3D

Meshes

William Kiefert
Princeton University

™

Figure 1: Example session in which a user segmented a model withigetiscissoring. Strokes are shown in transparent bladKei2nt colored surfaces
indicate separate parts computed by the intelligent scisgaalgorithm. Note how the cuts between parts are smoothveil-placed, even though the user
drew wide, inaccurate strokes. This sequence took undenatenwith the system presented in this paper and the viewpeirer changed. The image on the

far right shows the cuts as seen from on the backside of the.mes

Abstract

Many algorithms and tools exist for the segmentation of 33imes.
However, they are labor intensive and lack the simplicitgBfim-
age segmentation systems, limiting them to a small set oérexp
users. This paper introduces a new segmentation tool wigh a
for accurate and exible interactive mesh segmentation nyain-
tains an easy-to-use interface suitable for novices andrieqred
users alike. Extending the stroke based interface of 2Dligeat
scissoring, 3D intelligent scissoring tackles the dif e that arise
from three dimensionality while at the same time gives ther us
more freedom than in previous systems. Intelligent scisgasb-
tains desirable segmentations easily and interactivaly,presents
many possibilities for future work within the eld.

Keywords: Segmentation, Interactive modeling tools

1 Introduction

The decomposition of an object into a set of meaningful pgarém
important operation in many areas of computer graphicsvndi-
mensions, a variety of easy-to-use tools already exisefatuire ex-
traction and image segmentation. However, expanding tloede
to three dimensional meshes introduces numerous new pnsble
Current research has developed a number of new tools faraks
yet because they can be labor intensive and dif cult to useirt
use is limited to a small set of experienced users. Thusetiser
a demand in 3D interactive modeling for an easy-to-use toat t
combines the simplicity of two dimensional image segméwmat
with the accuracy of many current three dimensional segatient
tools.

This paper introduces just such an intuitive and exiblel tioo
the interactive segmentation of 3D meshes. The user pante s

1senior thesis, April 30th 2004dvised byrhomas Funkhouser.

number of strokes on the mesh surface to signify seams afediesi
segmentation. The system then nds the optimal closed conto
through the user's strokes, and segments the mesh acclyrdinis
intelligent scissors system is a true extension to preweork on
two dimensional image intelligent scissoring; the undedyalgo-
rithm is enhanced to adapt to the problems of three dimeabkion
ity and the simple stroke based interface is modi ed to alfow
greater user exibility. These two extensions, an optirtimaalgo-
rithm that allows for iterated re nement and a exible intace for
interactive segmentation, are the main contributions isfulork.

Motivation for this work comes from the aforementioned gap
within the current selection of interactive segmentatioolg. Av-
erage users do not have user-friendly tools to create mesitiesir
own design. Additionally, the effort involved to use thesels in-
creases as mesh resolution increases. As three dimensiodals
becomes more widespread for the everyday computer useinit i
portant to research and develop new easy-to-use tools tr&tfor
both the professional and the novice.

The following sections address the major issues in the dpvel
ment, use, and testing of 3D intelligent scissors. Sectiexp?ores
current research and systems that relate to intelligessasing.
Section 3 provides a broad overview of the system, whild@est?
through 6 examine the algorithms and implementation ofligant
scissors. Section 7 provides results from the system anhse®
concludes.

2 Related Work

Intelligent scissoring of 3D meshes builds off the researahwork
of numerous other systems. The following section descitiest
work has been done with relation to intelligent scissorind bow
intelligent scissoring expands the existing eld of intetige mod-
eling.

2D Intelligent Scissoring: There has been extensive study in the

Naive algorithm

Intelligent Scissors

(c) Top view

(b) Front view

(a) User stroke

Figure 2: A screen-space “lasso” (top row) produces an unexpected seg
mentation when the camera view is not perfectly aligned thiehdesired
cut. In contrast, our intelligent scissors (bottom row) sithe optimal cut
through the stroke, which may or may not be orthogonal to tbe direc-
tion.

eld of 2D feature extraction. Systems like [Mortensen arati#tt
1995] have been incorporated into almost every commercigily
ics editor today. Adobe Photoshop ([Incorporated 20043)dwth a
“magnetic lasso” and an “extract” option to aid users in segtimg
features within the image. Essentially, our system aimséaost
fer these intuitive and effective tools into the 3D modelimgrid.

However, there are two main dif culties that arise duringstpro-
gression into three dimensionality. First, there are ndusions

on meshes. This method is effective in nding both protrasiand
depressions in a mesh, and avoids the dif cult clean up bl

of screen space algorithms. However, in order to specifyabmsn
of the desired segmentation, individual vertices must bextsd by

the user. This forces the user, after specifying some et one
side of the mesh, to rotate the mesh and specify at least otexve

on the other side if a full encircling contour is desired. @rge
nely sampled meshes, it can be tedious to specify specittives
and dif cult to determine the optimal vertices to chooseelligent
scissors aims to give the task of picking vertices to theesysind
allow the user to simply specify general areas of desirethsetp-
tion without necessarily changing the view direction.

Shortest Path Algorithms: In addition to geometric snakes, there
are systems that nd the shortest path between user speceed
tices ([Gregory et al. 1999; Wong et al. 1998; Zockler et a0@).
These systems fall subject to the same dif culties mentibaleove
and require the user to specify the vertices in consecutileroln-
telligent scissors builds off of this approach yet allesgathe user
from the responsibility of specifying vertices and alloves the
painting of strokes in arbitrary order and direction.

Min Cut Algorithms: As an extension to shortest path algorithms,
a prototype intelligent scissoring system found the locapb
around the shortest path using a breadth rst search. Fdong a
the opposite edges of the connected graph were marked assour
and sinks, and a minimum cut algorithm was applied to nd the
optimal cut contour along the initial shortest path stroketour.

in 2D images. The entire image can always be seen from a singleThis method worked well for low resolution meshes. Yet sitize

viewpoint. Thus, it is simple for a user to trace the contduthe
feature they would like to extract. In three dimensions, géhére
mesh cannot usually be seen from a single viewpoint, making i
dif cult and, for the most part, impossible to draw a complebn-
tour in a single stroke from a single viewpoint. Second, tteemm
assumption for 2D intelligent scissors, stemming from #ek lof
occlusions, is that the user will draw a fully closed contoBoth
the “magnetic lasso” and “extract” option in Adobe Photgshe-
quire such a contour. Because one of the goals for 3D inégitig
scissors is simplicity, and since drawing a closed contola mesh
in a single stroke is usually impossible, this assumptidhnet be
made. In the end, our system will have to connect the varisas u
strokes into a single closed contour as well as determinédéisée
cut within the speci ed strokes.

Screen Space Algorithms:Almost every existing modeling sys-
tem today (e.g. [Foundation 2004], [Wavefront 2004]) corga
some variation on a simple screen space algorithm for setymen
parts of a mesh. The most common tool is a “select box,” amaleg
to 2D image select boxes, where the user clicks and dragsiaqoi
the screen to de ne a rectangular region on the screen. Alices
and faces that project onto the screen within this regiontene se-
lected and segmented. This type of algorithm constraindekied
cut contour to align exactly with the view direction. As séefrig-
ure 2, poor results are obtained when this constraint is bt in
fact, it is often impossible to align the the best cut for aegivnesh
feature with the viewpoint direction. Also, surfaces in thesh
are cut even if they are not visible, so other parts of the rhibde
are occluded by the selected region will also be segmentedll |
instances, signi cant clean up by the user is required tater¢he
desired segmentation. The time spent cleaning up (i.e.ctigde
individual faces for addition or removal from the segmerged) is
proportional to the number of faces in the mesh, thus makiredy
sampled meshes labor intensive. Many modeling systemsehave
tended the select box to a screen space “lasso.” Howevelaggo
suffers from the same problems as mentioned above and@uditi
ally requires the user to draw a very precise contour on treesc

Geometric Snakes: Geometric Snakes, introduced by [Lee and
Lee 2002], is an energy minimization method for featureaotton

running time to nd a minimum cut i©(n?) wheren is the num-

ber of vertices, this method was too slow to be interactivddime
meshes. Additionally, itis dif cult to form a minimum cut gph for

an arbitrary number of user strokes in arbitrary locatiGusmore
restrictions have to be placed upon the user. Local optimizs.

are also dif cult since every re ning stroke requires gldbmaini-

mum cut computation. This can cause the cut contour to change
upon re nement in areas that were not local to the re ningké:.

Automatic Segmentation: Automatic segmentation methods
([Katz and Tal 2003]) produce desirable results for manytress
There are obvious advantages to these automatic methddst-ye
tentimes a user can immediately visualize a desired segti@mt
that could be dif cult for automatic methods to determindsd, in
the context of an interactive modeling tool, the user wouéthixto
specify exactly which part should be segmented rather thito a
matically segment the mesh into many parts.

CAD Systems: CAD systems ([PTC 2004]) are not much differ-
ent than the other commercial modeling systems mentionedeab
The main difference lies in the type of meshes created, rétia@

in the system's tools. The meshes created in CAD systems tend
to have strongly de ned features with many sharp angles atd
planes. These situations are ideal for intelligent sc&sbacause
almost any sharp feature could be segmented by a singleestrok
Thus, intelligent scissors could become an important todhese
systems.

Cut and Paste Methods: Cut and paste based modeling systems
like [Biermann et al. 2002] allow for feature extraction froa
source mesh before transferring that feature to some déstin
mesh. These systems focus mostly on the warping of the given
feature to the destination mesh rather than the featuraaidn it-
self. Typically, a general region around the desired featoust be
speci ed by the user via a spline or set of faces. Yet thisoegieed
not be exact because the system will eventually blend thé fieas
ture with the destination mesh. Thus, the feature extradtols

of these systems are not exact enough for pure mesh segimentat
and require the user to specify a full contour. Their usecispe
contour is generally not optimized by the system given thairt

Figure 3: Left: The basic ow of a user sessiorRight: An expanded
view of a user session. Blue rectangles represent useralt@utractions
while green rectangles represent automated work on the gfdtte system
(Creating new swaths can be done automatically by the systelny the
user).

algorithm blends the feature in the end.

This paper is an expansion of the intelligent scissoringlesd
in [Funkhouser et al. 2004]. Certain gures and portions eftt
from this earlier work have been incorporated into this pape

3 Overview

As seen in related work, current methods for interactiversaga-
tion can be labor intensive and tedious. Many of the methads b
come more dif cult as the resolution of the mesh increasdwusT
intelligent scissors aims to Il a current gap in interaetimodel-
ing tools and presents a simple and intuitive method to sagme
meshes into parts, regardless of the resolution of thelnitesh.
Speci cally, intelligent scissors frees the user from sfyéieg spe-

ci ¢ vertices, allows the user to produce cuts that encitheemesh
from a single viewpoint, and gives the user the freedom taifpe
portions of the cut contour in any arbitrary order while tlygstem
gives progressive feedback.

The left image in Figure 3 shows the most basic ow of the in-
telligent scissors system. The user simply paints a strokéhe
surface of the mesh indicating the desired area of segniamtat
The system then nds the optimal closed cut contour de ned by
that region. Finally, the mesh is segmented along the cubaon
To allow for greater exibility, the system can show the posed
cut contour to the user before segmentation and the useratan p
more strokes to achieve further re nement.

The right image in Figure 3 shows a more detailed view of
what actually happens in the intelligent scissors systerherd

the common segmentation case, the user will simply drawo&estr
and the mesh will be segmented immediately. Further re ngme
can be achieved through additional paint strokes on anyeoéxa
isting swaths.

4 Intelligent Scissoring

Intelligent scissoring expands upon previous methods um fim-
portant ways. These are described in detail in the followiog
subsections.

4.1 Stroke Speci cation

Using a brush metaphor, the user paints “strokes" on the swash
face to specify where cuts should be made (Figure 4a). Eeakest
has a user-speci ed widtlr, representing a region of uncertainty
within which the computer should construct the cut to folltve
natural seams of the mesh. From the user's perspective, ¢he-m
ing of each paint stroke is “l want to cut the surface alongtibst
seam within here.” From the system's perspective, it specia
constraint that the cut contounustpass withinr pixels of every
point on the stroke, and it provides parameters for compuitire
cost of cutting along every edge,in the mesh:

cosf(e) =

Gen(9? Cang(®)® Cuist(®)? Guis(99 Caot(®) Cour(®)”
Edge costs are used to determine the optimal path along tele.me
Each edge cost parameter is described in depth below. Thaltef
values for the parameter weighting termas,b, d, g, | andh are

all one, but may be tweaked by the user for various cut behavio

Edge Length: ¢en(€) is simply the length ok, and ensures that
short cut contours have low cost.

Dihedral Angle: cang(€) = ge=2p Wherege is the angle between
the two adjacent faces & giving cuts along concave edges less
cost. This parameter dominates cut contour decisions orseoa
meshes where single edges typically de ne important togielo
cal features such as creases. However, in nely sampled esesh
ccurv(€) provides better optimization in troughs and valleys where
the dihedral angle does not provide enough local informatio

Visibility: cyis(€) gives less cost to edges that are not visible. This
parameter is motivated by the observation that the userdimaNe
painted on a visible edge if a cut were desired there. In atloeds,

not painting visible edges signi es that the user does nsirde cut

in that region. Combined withyq(€), Cyis(€) encourages the least

are three main extensions to the basic system that the uger ma cost cut contour to traverse the “back-side” of the mesh.hu\it
or may not use. (1) When the user nishes a stroke, the painted these terms, the least cost path would most likely travénsmigh

region of the mesh can optionally be resampled accordingde a
sired edge length (section 6). This allows for better cutcors
in coarse regions of the mesh where there are few initial dgd
large triangles. (2) The system can optionally build a phrtiesh,
explained in section 5, which ensures optimization aloregfthl
length of self-intersecting user strokes. (3) In order torogshes
with a genus other than zero, multiple cut contours may beetbe
Swaths, explained in detail in section 4.4, are collectiohaser
strokes that maintain separate cut contours. The systemsafbr
creation of multiple swaths to handle high genus meshes.

These extensions do not complicate the basic ow of the dintel
ligent scissors system. Instead, they extend the exibitit the
system as a whole while maintaining a basic interface. Mesh r
sampling and partial mesh creation are both handled auicetigt
by the system. The creation of new swaths can also be handled a
tomatically by the system, but may also be controlled by #er.un

the user stroke and then back upon itself. In general, whengbr
stroke is more than half of the width of the object being chg t
least cost path will traverse the “back-side” of the mesh

Normal Orientation: cgqt(€) as mentioned above encourages the
least cost cut contour to traverse the back side of the mebler&ss
cvis(€) gives all non-visible edges less cosgei(€) gives edges
whose adjacent face normals are aligned with the viewirection
less cost. Without this parameter, the least cost cut contould
have the tendency to follow the non-visible edges alongithews
ette boundary back to the beginning of the stroke. Tlyg(e)
allows the least cost contour to traverse the actual “bati"of

the mesh, rather than traverse the edges just beyond tloeisith
boundary.

Stroke Distance: cyist(€) = % whered is the maximum distance
from the centerline of the stroke to the screen space piojeof

the edge. This parameter re ects the desire of the user tedgs
that lie close to the center of the stroke.

Curvature: Considering curvature when calculating the edge cost

allows for better cut decisions in nely sampled troughs arehses
of a mesh where the dihedral angle does not provide enough inf
mation about local topologycur/(€) represents the curvature of the
mesh perpendicular to the edge direction. When a mesh isdipad
curvatures and principal direction vectors are computedcéery
vertex according to [Rusinkiewicz 2004]. These values ateri
polated to compute curvatures for every edge. Dependindien t
mesh topology, these edge curvatures can vary greatly ovetea
range of real numbers. In order to map this variance to a mgani
range of [0, 1], statistical techniques are applied. Spely, af-
ter the initial mean and standard deviation are calculat@dature
values that lie more than three standard deviations abobelow
the mean are temporarily ignored while a second mean andasthn
deviation are calculated. This second mean and the stadéaid
ation de ne the oor and ceiling that map curvature valuegtie
range [0, 1]. The default range, which can be adjusted by $be u
clamps curvature values to within three standard deviatabove
and below the second calculated mean.

The cang(€) andceun(€) parameters are by default set up to en-
courage cuts along edges with negative perpendicular tuss
(protrusions and creases in the mesh). However, by ingettiese
terms it is possible to segment along very convex portionthef
mesh (depressions and rounded corners).

4.2 Finding the Cut Contour

Figure 4: Cutting the bunny with intelligent scissoring: (a) the useaws

a wide paint stroke; (b) the system identi es all verticeghin capsof the
stroke, G and G; (c) it then nds the least cost paths from every vertex
in C; to every vertex in €twice, once constrained to lie within the stroke
(yellow dotted lines) and once without any constraints (detted lines),
and forms the proposed cut out of the the pair of paths witHehst total
cost. (d-f) Since the edges traversed by the algorithm {rsinge gray) have
less cost (lighter gray values) in concave seams and on tble-fide of the
mesh, (g-f) the least cost cut partitions the mesh along arabseam of the
mesh.

Proposed |
(‘omnur/.'

Proposed
Contour

i

Refined |

Contour/
/

Figure 5: Cutting the face of Athena with intelligent scissoring: @@ user
draws an imprecise rst stroke (gray); (b) the system pragma cut (yellow
curve); (c) an overdraw stroke (gray) is drawn to re ne thet;c(d) the
system splices in the least cost path traveling franrst to C4 (red), then
to G, within the stroke (blue), and nally to){green); (e) the proposed cut
contour is updated; (f) the nal result is a segmentationh® mesh into two
parts (green and red) separated by natural seams of the mesh.

As mentioned in the previous section, the challenge is tothrel
least cost closed sequence of edges that passes withikels of
every point on the user's stroke in sequence. Because thease
draw an open contour, two distinct least cost sub-problennst ive
solved: the optimal path within the stroke and the optiméthgan-
necting the end points of the stroke back together. Thes@atits
together create a closed cut contour. The key to solvingethes
sub-problems ef ciently is observing that the cut must ghssugh
at least one vertex in the “cap” at each end of the stroke. &ps c
of the strokeC; andC, (Figure 4b), are de ned as the sets of ver-
tices within screen space radiusf the rst and last points on the
stroke drawn over the model itself. Using Dijkstra's shettpath
algorithm ([Dijkstra 1959]), modi ed with our edge cost fetipn
described above, the system solves the two sub-problerhsad1
the least cost path constrained within the boundaries otiiee's
stroke between all vertices in C1 and all vertices in C2, @&ydnd
the least cost path, unconstrained by the stroke boundbhgeseen
all vertices in C1 and all vertices in C2 (Figure 4c). The myati cut
contour is the pair of paths, one from each sub-problem ftinats
a closed contour with least total cost.

The computational complexity of the intelligent scissgraigo-
rithm for a single stroke i©(k nlogn), wheren is the number of
edges in the mesh, akds the number of vertices iminf C;;Cog.
kis typically small and the constrained least cost path moldnly
considers a small subset of the mesh. Therefore, the uppedbo
on computation time is determined by the unconstrained ez
path search. In general, these least cost path searchesawey
some subset of the mesh, allowing running times to be intigeac
in practice.

4.3 Re ning the Cut Contour

By default, the system will partition the mesh immediatefiea
the rst stroke, according to the computed optimal cut. Hegre
the user is provided the option of re ning the cut interaetwwith
“over-draw” strokes. In this case, the system displays appsed
cut” for user veri cation. If unsatis ed, the user can dravew
strokes that re ne the cut incrementally. This feature emages
the user to draw broad strokes quickly, in any order, and itleea-
tively re ne the details only where necessary.

For each over-draw stroke5 the system automatically deter-
mines the portion of the proposed cut that should be replag¢de
over-draw stroke and splices in a new, locally optimal phatbugh
the new stroke. The system starts by nding the poiMg,and
\/, on the proposed contour closest to the stroke's endpoimtke
mesh (Figure 5c). If they lie within a previously painted icegy
the system simply removes the shorter of the two cut contoers
tween them. Otherwis¥; andV, are moved away from each other
along the proposed cut until they both reside in previousinted
regions.

To compute the new path frov, to V5, a divide and conquer

approach is used again. We rst compute the least cost peths f
V1 andV; to all vertices in their corresponding stroke capsand

5 Partial Mesh Creation

The following subsections provide the motivation, de oiti and
implementation of the partial mesh extension to the irgehi scis-
soring system.

5.1 Motivation and De nition

Given the algorithm described in section 4, the least cdstantour
is still not guaranteed to satisfy the original problem diggion in
certain cases. Speci cally, when the user stroke is saéfrgecting,
the least cost cut contour will not necessarily pass withgixels of
every point on the user stroke. Because there are no negalje
weights, the least cost cut contour will always bypass amjesy

C,. Then, we compute the least cost paths within the stroke from within the user stroke, thereby neglecting to pass withpixels of

all vertices inC; to all verticesC, as before (Figure 5d). Finally,
we nd the triplet with least total cost forming a connectipgth
fromVy to V, throughC; andC, and splice it into the proposed cut.
This algorithm also runs i@(k nlogn).

all points on that cycle.

An initial solution might be to restrict users from drawingctes
within their strokes. This might be feasible when dealinghvex-
traneous cycles that do not make intuitive sense when segrmgen

This incremental re nement approach has several desirable Meshes. However, one common case is for the user to sligrely o

properties. First, it provides local control, guarantgeihat pre-
viously drawn strokes will not be overridden by new strokekess
they are in close proximity. Second, it is fast to computeceiall
but two of the least cost path searches are constrainedudtha
the stroke. Finally, this method allows the user to spedifcisely
where the splice should be made by simply starting and stgppi
the over-draw stroke with the cursor near the proposed conto

4.4 Handling High Genus

lap the start and end of the stroke (Figure 7, left), in essemaking
the whole stroke path a cycle. In these cases the system woadd
pose the cut in the middle image of Figure 7, whereas the corre
least cost contour would look like the right image of Figure 7

Figure 7: Left: The user stroke, black, shown around the eye of Athena.
Notice that the start and end of the stroke overlap each otBenter: The

Meshes with a genus above zero cannot necessarily be segment pronosed contour without the use of a partial mesh. The leastt contour

into parts using a single closed cut contour. To handle tbases,
we de ne a new term, awath to refer to a collection of one or more
user strokes that together create a single closed cut aorfEaich
swath on the mesh can be re ned independently of the othdrs. T
mesh always has one active swath, which is the target of amy ne
user re nement, and zero or more inactive swaths. At anytpoin
the user can create a hew swath or switch which swath is diyrren
active.

Figure 6: Left: A single user stroke that crosses two sections of the torus,
causing the system to automatically generate two separed¢hs. Right:
Resulting segmentation.

Additionally, new swaths are automatically created whea th
user stroke crosses multiple portions of the mesh on a sitgike,
i.e. crosses a silhouette boundary onto the background herd t
crosses a silhouette boundary back onto the mesh (Figuedtp, |
Without this feature, the user would be required to draw oroks,

between cap vertices is a single eddgeight: The proposed cut contour
using partial mesh construction. The least cost path saetighe require-
ment that it passes within r pixels of every point on the oaguser stroke.
Proposed contours in this gure are shown thicker for clgrit

In order to overcome this case of self-intersecting useksts
we de ne apartial mesh A partial mesh is an exact copy of the
original mesh under the user stroke with the added propbsy t
it does not self-intersect (Figure 8). The least cost pa#iaéen
cap vertices constrained within the stroke are then catedlan
the partial mesh, while the unconstrained least cost pathstl
computed on the original mesh. Optimizing the cut contoar tre
partial mesh ensures that the least cost cut contour witttse any
cycles within the user stroke, thus avoiding the situatioRigure 7,
middle.

The creation of partial meshes is presented as an optioreto th
user and may be turned off. Although the creation of partiegines
does not add signi cantly to the running time (it runs®im) where
m is the number of vertices within the stroke), turning it cdfves
computation in cases where the user does not plan to draw self
intersecting strokes.

create a new swath, draw the second stroke and nally segment Figure 8: Visualization of a partial mesh. Notice that the partial mésa

Automatic swath generation allows the user to simplify firisce-
dure into a single stroke.

duplicate of the original mesh except that it does not irgerstself.

5.2 Implementation

The implementation of partial meshes is straightforwarftethe
user stroke is drawn, a non-optimized open contour is folimaga
the center of the stroke. Every edge along this contour iatece
within the initially empty partial mesh. Doing so “unfoldshe
stroke: intersecting edges along the stroke are no longacext
on the partial mesh. New edges, faces, and vertices are &tdad
breadth rst search whose terminating case is a vertex ilsiblut-
side the stroke radius Each edge, face, and vertex on the partial
mesh stores a reference to the original mesh, allowing easyla-
tion back to the original mesh after the least cost path iadou

6 Mesh Resampling

The following subsections describe the motivation and enmn-
tation of mesh resampling with respect to intelligent smiss

6.1 Motivation

Cut contours described in the previous sections were aitdohto
preexisting vertices and edges. This limitation of cut oons, al-
though satisfactory in many cases, cannot handle manyhpessi
segmentations. Planar regions of a coarsely or nely sadplesh
may only contain a small number of triangles whose edgesvallo
for few segmentation options. For example, if a user wisloezlit
a tabletop comprised of two large triangles, the only pdesit
would be the single edge across the diagonal. With mesh resam
pling, the tabletop could be cut into any arbitrary shapgyFé 10).
Segmenting through planar regions with low tessellatioonis
practical motivation for mesh resampling within the iniggint scis-
soring system. However, many other scenarios can be amiglcbr
with this extension: a user may have speci c and ne segniéra
requirements, the initial mesh could be poorly tessellétedmany
long thin triangles), or the segmented region may need talltedce
after the segmentation in a way that requires additionalpsesn
Mainly, mesh resampling allows for more segmentation @i
regardless of the initial mesh.

6.2

Mesh resampling is achieved through the iteration of thragsid
edge operations as in [Hoppe et al. 1993]. These three edge op
ations collapse, split, or swap a single edge as seen in dggadn

in Figure 9. To determine which edges need to be collapsditl, sp
and swapped, we use a method similar to that of [Markosiah et a
1999] and [Lawrence and Funkhouser 2003] where each edgs kee
track of its “desired length” as well as its actual length.tekfthe
user paints a stroke, the “desired length” of every visildgesun-
derneath the stroke is updated to the length speci ed by ez u
before the stroke. The ratio of desired length to actualtteifor
each edge determines which operations, if any, are to berpesti

for the edge.

Implementation

edge collapse edge split edge swap

Figure 9: The three basic edge operations used during mesh resampling

Figure 10: An overhead view of a table top that has been resampled incre-
mentally using the indicated values as desired edge lengthe zoomed
image on the right shows a user stroke along with the proposédontour.
This arbitrary cut was impossible on the original tabletghown top left,
that only consisted of two triangles.

Speci cally, three heaps maintain each of three values Verye
edge: the minimum dot product of all angles on the adjacergsfa
for edge swaps, the ratio of desired length to actual lermtledge
splits, and the ratio of desired length to actual length figescol-
lapses. Although both are sorted using the same value, tpe ed
collapse heap is distinct from the edge split heap becawseate
sorted in opposite orders. The system iterates through leaap
in order (split, swap, collapse), performing that heapspeztive
edge operation on the minimum value edge until no more legal o
erations can be performed in that heap. Legal edge opesadien
de ned as follows:

Edge Split: Edge splits are legal when the ratio of desired length to
current length falls below a given threshold. The defauieshold

for the system is 0.5. Thus, when the desired length of an edge
is half the current length of the edge, that edge is split, tued
two resulting edges will better approximate the desiredjtierof

an edge. Because splitting an edge does not introduce aory err
into the mesh topology, there are no additional restriction edge
splits.

Edge Swap: Edge swaps are legal if two conditions are met: (1)
the current minimum dot product of all the angles of the eslgd-
jacent faces falls below a threshold and (2) if the swap wdiéase
the minimum dot product of all the angles of the resultingpadpt
faces. Condition one ensures that only adjacent triangidsome
large angle are considered, and condition two ensureshtbaitap
will be productive. Large angles are characteristic in ltinig tri-
angles and thus, attempting swap edges in these situatomotes
the creation of roughly uniform equilateral triangles.

Edge Collapse:Edge collapses are legal when the ratio of desired
length to current length is larger than a given threshold défault

for the systemis 1.5. Using logic similar to that of legal edglits,
edges are collapsed when the current length is less theoftalé
desired length. Collapsing these short edges aids in thevam
of skinny triangles. Edge collapses have the ability tooidtice
resampling error because they can signi cantly changel kogel-
ogy. Currently, the system does not impose any additiorstiains

on the legality of edge collapses because most of the edgés th
fall above the threshold are small enough that the errorymed

is not signi cant. However, more sophisticated methodshsager-

ror quadrics ([Garland and Heckbert 1997]) or energy miration
([Hoppe et al. 1993]) could be applied to diminish the introison

of error.

One proposed method for mesh resampling involves creating
vertices along the center of the user stroke, and then uilatigg
the surrounding area appropriately. However, this methottis
from the major setback that it does not sample uniformlyedu-
larly shaped triangles, especially long thin ones, havedhere dis-
advantage that any future segmentation in the area pro¢agepsd,
irregular cuts. Additionally, within the context of intetive mod-
eling, uniform sampling improves results for many other meg- [Katz and Tal 2003] Intelligent scissors
erations ([Hoppe et al. 1993]). Therefore, the implememtethod
of mesh resampling described above is used primarily becaus
ensures that affected triangles are roughly equilatemltlaat ver-
tices are evenly sampled. A uniform resampling of the melsiwal
greater exibility for future segmentation and other madgl op-
erations. Furthermore, laying down vertices along the ageke
tends to lock the cut contour into the exact path of the usathét
than create a path of edges along the user stroke and adgust th
surrounding topology, intelligent scissors adopts theosfip view:
resample the local topology and then optimize under th&stag-
cordingly.

Figure 11: Comparison of segmentations produced by the automatic al-
gorithm of [Katz et al, 2003] (left) and the interactive iliigent scissors
algorithm described in this paper (right) for a model of a eteh and a
hand (654,666 polygons). Note that the cuts are better atigwith the
semantic seams of the object with intelligent scissors.

7 Results

The following subsections present results obtained fragmiritelli-
gent scissors system described above. All tests were pggtbon

a 2.8 GHz Pentium IV processor running Windows XP with 1 GB
of memory and a GeForce4 graphics card.

7.1 Scissoring

Figure 11 compares our intelligent scissoring results foneetah
and a hand with results reported by [Katz and Tal 2003]. Wthike
comparison is not altogether fair, since our algorithm tetiactive
and theirs is automatic, it highlights the main disadvaataigauto-
matic approaches: they do not understand semantics. Ranaes
the cheetah segmentation produced by [Katz and Tal 200Bides
portions of the animal's back with the tail and neck and cmsta
an unnatural boundary between the right-hind leg and body (F
ure 11, top left). As a result, the parts cannot be simplyqubstto

another model without re-cutting them. Similarly, theintaseg- Figure 12: Left: The top image shows a user stroke over the bunny. The

mentation does not separate all the bones. Our segmentdtibe portion of the mesh indicated is shown in detail bel®ight: The proposed

hand (Figure 11, bottom right) took 13 minutes (of user timéjile cut contour after resampling. Again, the indicated regidrile mesh is
(Fig ght (; shown in detail below. Notice the even resampling of the amsder the

the automatic segmentation (Figure 11, bottom left) tookr28-
utes (of computer time) for the same model [Katz and Tal 2003]
Our segmentation of the cheetah took under thirty seconds. . .

Figugrje 1 and Figure 17 show two example use)r/sessions where a .';]AeSh res.amplllng. (Flguc;e 1? Succfssxf"ﬁ' reshalmplhets thelh mes

; : : with even triangulation under the stroke. Although in thiample

cpmpllqated .mod.el can be segmented Into many parts frorrg.lesm the resamplin gdoes not provide a path of Iessgcost it ddga/ al
viewpoint usmg_smgle stoke;. Bqth sessions took un_d_emte_lof for more dgtai?ed editin opf the se mpent Because on,I areder
user time and highlight the simplicity of intelligent sais®g. Fig- 9 9 ‘ y

ure 16 shows an additional session more typical of a CAD myste the stroke are reampled, there is a tendency for uneverguian. on
This series shows that on a mesh with sharp features, geetli along the border of the resampled area and the rest of thmalrig

scissoring can provide a quick accurate segmentation wsthgie mesh. Other limitations to mesh resampling are discussedein
stroke. section 7.2.

Figure 15, on the other hand, shows a more involved userosessi
on a mesh where the object being segmented could not be dut wit

stroke.

7.2 Limitations

a single stroke. Instead, the user draws three separakestBig- The intelligent scissoring algorithm cannot perform alpeg of
ure 15b, d, f) to achieve the desired segmentation of theodrkagb splits (e.g. Figure 14). For instance, if a surface is oaetuffom
(Figure 15h), using the proposed cut contours (Figure 15g) as all viewpoints, the user cannot paint on it. Other user fater
iterative feedback. This series, completed in under thrirites, metaphors, such as a “laser” mode in which all surfaces utiger
demonstrates the advantage of re nement strokes on a ccaugdi mouse get cut, would be better for such a situation (e.g.,ddav
mesh. etal. 2003]). Similarly, the painting interface metaphan produce

unexpected results when the user paints over a silhouattedboy.
The problem is that the system makes sure to cut through peery
of the user's stroke, which may connect points adjacent iaest
space but distant on the surface (Figure 13).

(a) User Stroke (b) Proposed Cut

Figure 13: The intelligent scissors algoritm ensures that the cut @ont
(blue and yellow line on right) visits all regions painted the user (left),
which may be problematic when the stroke crosses an intailbouette
boundary. Yellow portions of the cut are painted, and bluesoare not.

If the user brush widtht, is large enough, desired cuts across

thin parts of the mesh don't necessarily traverse the bdeksi the

Figure 14: A user stroke with mesh resampling turned on. The initialmes

mesh. Since is large, the least cost path will, in these situations, be (a) has no horizontal edges along the surface of the tube. UEke stroke

the folded contour between the two closest cap verticesmitie
stroke. Take, for instance, the case wireigegreater than half of the
width of the object being segmented. T@gandC, vertices will
overlap and the resulting contour will be a single vertexingle
edge. To combat this situation, a heuristic was used to lint
actual set of cap vertices within each cap to those whosegiiopn
onto the estimated stroke vector fell below a certain thokeshThis
heuristic effectively removed cap vertices that were ledatiose to

the center of the stroke and close to the other end cap. Wtide t

solved the problem and forced cuts with large caps to traviérs
backside of the mesh, it sometimes eliminated the vertéxitbald

have produced the least cost path. Further work could be tione

investigate the minimum set of cap vertices to use that wetild
produce the optimal least cost cut contour and avoid thealaoge
r situation.

The mesh resampling algorithm presented in section 6 is-a pro
totype and is limited in two ways: (1) the algorithm does nigt a

tempt to minimize error and (2) the algorithm only resamples
mesh under the user stroke and not along the rest of the ctatzon
Fortunately, as mentioned previously, the rst limitatismminimal

because the mesh resampling algorithm used does not preidice

ni cant error most of the time. Only occasionally does thedb
topology change noticeably. Yet resampling itself was hetfo-
cus of this paper and other more sophisticated resamplitigade
could easily substitute for the current method.

The second limitation, on the other hand, is somewhat signi

cant. While resampling under the user stroke is effectiwk -

duces the desired results (Figure 14c), the areas of the beesh

tween strokes are not resampled (Figure 14d). Thus, if theats
tempts to segment a fairly simple object that consists ofddege
triangles, new resampled edges are created along the user eh

the front side but edges on the backside of the mesh remaisecoa

Thus, the proposed cut contour will be desirable on the fyett

(b) results in the creation of new edges in the desired arehwimat looks
like a desirable cut (c). However, the backside of the modslrtot been re-
sampled and the cut contour is forced to go along the bottotneotfube (d).
Resampling the entire mesh for this situation would be agintdsolution,
yet would be inef cient for many other situations. Intenegly, this mesh
also demonstrates a limiting case because the only poss#gmentation
requires painting on the inside of the tube.

a new least cost cut contour. Nevertheless, the resamplitigeo
mesh brings to light this new limitation and spawns a new afea
research.

8 Conclusions and Future Work

This paper proposes an intuitive and easy-to-use tool ferac-
tive segmentation of 3D meshes. This intelligent scisgpays-
tem is accurate and maintains its simplicity despite theluti®n

of the target mesh. Although this segmentation system can be

adopted into a variety of disciplines, it is aimed primaifidy in-

corporation within interactive modeling tools. An earliegrsion
of 3D intelligent scissors was implemented for Modeling byafn-
ple ([Funkhouser et al. 2004]), a system designed to creatiels
from parts of existing models within a database.

In addition to the future work discussed in section 7.2, erame
various avenues of future research for intelligent sc&sBince in-
telligent scissors combines both a user interface and amitdm
in a modular way, various other algorithms can be incorgaran-
derneath the interface. For instance, Geometric Snake= @nd
Lee 2002]) could be applied to the proposed cut contour fidhéu
re nement. Work could also be conducted to develop varietito
the stroke based interface that would allow different siregeci -

jagged on the back side where the number of edges is low. Fig- cations for different situations.

ure 14 demonstrates this situation. Further work must be don

Overall, this paper presents a new tool in an unexplored area

determine where else the mesh should be resampled afterasuch of interactive modeling, focusing on achieving the simipliof

user stroke. A screen space solution to this question failsdany

of the same cases that a screen space segmentation algfaiithm

and resampling the entire mesh is unnecessary and conumatifyi
expensive for most situations. Another possible solutioule be
to nd the initial jagged contour, resample around it, andrthnd

two dimensional image segmentation within the three dirnogras
world. As a new tool in an array of existing modeling openasip
intelligent scissors will hopefully open the door to newyessuse

modeling tools that will help make 3D meshes as common and ac-

cessible as 2D clip art is today.

Figure 15: Example session in which the user segments the front rigitt &f a dragon mesh (a) consisting of 1,132,830 faces. Th&m®edemonstrates
intelligent scissors for a segmentation that requires ntban one stroke. The user draws an initial stroke (b) on théewside of the mesh. The system
proposes a cut (c), however the user rotates the model argltbatthe rest of the contour is not desirable. (d). An adddi stroke is drawn (d) and the
system re nes the contour (e). The gure is rotated againd #me user draws a third re ning stroke (f). The proposed comt(g) is what the user wants, and

the mesh is segmented. The resulting segmentation is shayaeen (h).

Figure 16: A user stroke and resulting segmentation of the fandisk h{a@8¢946 faces). Segmentation is shown from various viewgo

Figure 17: A sequence of user strokes on the armadillo model (345,%B5¥a From left to right, the user drawn series of approxenstrokes with the
resulting segmentation.

References

BIERMANN, H., MARTIN, |., BERNARDINI, F., AND ZORIN, D. 2002.
Cut-and-paste editing of multiresolution surfaces. Pirmceedings of
the 29th annual conference on Computer graphics and intatech-
niques ACM Press, ACM, 312-321.

DIJKSTRA, E. W. 1959. A note on two problems in connection with graphs.
Numerical Mathematics, 269-271.

FOUNDATION, B., 2004. Blender. http://www.blender3d.com.

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P., KIEFER, W.,
TAL, A., RUSINKIEWICZ, S.,AND DOBKIN, D. 2004. Modeling by
example.ACM Transactions on Graphics (SIGGRAPH 2004)g.).

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simpli cation using
quadric error metrics. IfProceedings of the 24th annual conference
on Computer graphics and interactive technigud€M Press/Addison-
Wesley Publishing Co., ACM, 209-216.

GREGORY, A., STATE, A., LIN, M., MANOCHA, D., AND LIVINGSTON,

M. 1999. Interactive surface decomposition for polyhednalrphing.
Visual Comp 15453-470.

HoprPE H., DEROSE, T., DUCHAMP, T., MCDONALD, J.,AND STUET-
zLE, W. 1993. Mesh optimization. IRroceedings of the 20th annual
conference on Computer graphics and interactive techrsigd€M, 19—
26.

IGARASHI, T., MATSUOKA, S.,AND TANAKA , H. 1999. Teddy: a sketch-
ing interface for 3D freeform design. IRAroceedings of the 26th an-
nual conference on Computer graphics and interactive tiegles ACM
Press/Addison-Wesley Publishing Co., ACM, 409-416.

INCORPORATERD A. S., 2004. Adobe photoshop CS.
http://www.adobe.com.

KATZz, S.,AND TAL, A. 2003. Hierarchical mesh decomposition using
fuzzy clustering and cutsACM Trans. Graph. 223, 954-961.

LAWRENCE, J., AND FUNKHOUSER, T. 2003. A painting interface for
interactive surface deformationBaci ¢ Graphics(Oct.).

LEE, Y., AND LEE, S. 2002. Geometric snakes for triangluar meshes.
Computer Graphics Forum (Eurographics 2002) 31229-238.

MARKOSIAN, L., COHEN, J. M., CRULLI, T., AND HUGHES, J. 1999.
Skin: a constructive approach to modeling free-form shagesPro-
ceedings of the 26th annual conference on Computer graphidsnter-
active techniquesACM Press/Addison-Wesley Publishing Co., ACM,
393-400.

MORTENSEN E. N., AND BARRETT, W. A. 1995. Intelligent scissors
for image composition. IfProceedings of the 22nd annual conference
on Computer graphics and interactive techniqu@€M Press, ACM,
191-198.

OWADA, S., NELSEN, F., NAKAZAWA , K., AND IGARASHI, T. 2003.

A sketching interface for modeling the internal structuoé8d shapes.
In 3rd International Symposium on Smart Graphit®ecture Notes in
Computer Science, Springer, 49-57.

PTC, 2004. Pro engineer. http://www.ptc.com.

RUSINKIEWICZ, S. 2004. Estimating curvatures and their derivatives on
triangle meshes.

WAVEFRONT, A., 2004. Maya. http://www.aliaswavefront.com.

WoNGgG, K. C.-H., Su, Y.-H. S., HENG, P.-A., AND SUN, H. 1998.
Interactive volume cutting. IGraphics Interface

ZELEZNIK, R. C., HERNDON, K. P.,AND HUGHES, J. F. 1996. Sketch:
an interface for sketching 3D scenes. Rroceedings of the 23rd an-
nual conference on Computer graphics and interactive tiegles ACM
Press, ACM, 163-170.

ZOCKLER, M., STALLING, D., AND HEGE, H. 2000. Fast and intuitive
generation of geometric shape transitiowsual Comp 165, 241-253.

10

